
The Full Software Stack for
the Sim-To-Real Transfer of a
Learned Bipedal Walking Policy

Thomas Godden

Dyson School of Design Engineering

Imperial College London

June 2023

Abstract

This report details the control development for the sim-to-real transfer of a reinforce-
ment learning bipedal walking controller. A joint controller and state estimator are
written to facilitate realtime control of the physical hardware. A simulated robot
model, parameter estimator, and reward function are made to enable an RL algo-
rithm to learn how to generate and stabilise a walking gait. The policy trained in
simulation is then transferred onto the real hardware. The results show that the
learned controller has generalized enough to be able to stabilize the physical system
despite modeling discrepancies and sensor noise.

Glossary
RL - Reinforcement Learning
PPO - Proximal Policy Optimization
Hybrid System - A system that exhibits both continuous and discrete behavior
Sim-to-Real - The transfer of a controller learned in simulation to real hardware
ROS - Robot Operating System
CAN bus - Controller Area Network communication bus
IMU - Inertial Measurement Unit
MCU - Microcontroller Unit
Pose - Position and orientation of an object
Proprioceptive - The sense of joint position, velocity and force
BLDC - Brushless DC motor
Policy - A specific control architecture and set of corresponding parameters

1

Contents

1 Introduction 3
2 Control Design 6

2.1 Architecture . 6
2.2 Motor Control . 9
2.3 Joint Control . 12
2.4 Ankle Kinematics . 13

3 State Estimation 17
3.1 Orientation Estimation . 17
3.2 Proprioceptive Pose Estimation . 19

4 Reinforcement Learning 22
4.1 Modeling and Simulation Enviroment Setup 22
4.2 Learning Framework and Reward Function 24
4.3 Final Reward Function . 26
4.4 Learning Curriculum . 28

5 Validation 30
5.1 Simulated Impulse Rejection . 30
5.2 Simulated Slope Climbing . 32
5.3 Simulated Stair Climbing . 33
5.4 Sim-to-Real Flat Ground Walking Trials . 34
5.5 State Estimation Accuracy . 35

6 Conclusion 36

2

1 Introduction

Bipedal waking poses a unique control challenge: it is a high-dof, control-through-
contact, hybrid system with real-time control constraints. In particular, the timing
constraints differentiate it from manipulation where each state is generally statically
stable. This means it is a good problem to stress test control strategies on. If an
approach can stabilize a bipedal robot, it implies it will likely work well on other
similar problems. This project will discuss writing a full stack walking controller for
a bipedal robot that uses Reinforcement Learning (RL) to generate a dynamic gait
capable of untethered walking.

We will start with a low level actuator interface and build up the software compo-
nents required to perform joint control and full state estimation. Then a model of
the robot will be generated and ported to a simulator. A reinforcement learning
agent will be trained to control the simulated version of the robot and finally the
learned policy will be transferred back onto the real hardware. Performance will be
evaluated both in simulation and on the real hardware. The robot we are using is
detailed in [32], named SLIDER for it’s unconventional prismatic joints that replace
the traditional knee joint.

Approaches to bipedal walking control
Walking has been studied by biomechanics researches far before engineers had the
tools to create robots capable of reproducing legged locomotion [19]. Early theories
such as ZMP (zero moment point) control appeared as early as 1969 [31]. These
experiments and resulting models attempted to explain the energy shift along the
walking cycle by tracking the point along the ground where the tipping moment
due inertia and gravity equals zero. This can be thought of as the pivot point of
the robot and shifts forwards under the feet as the robot walks. This was exploited
heavily by the Honda Asimo robots [12], which displayed remarkable stability for
slow movements but lacked true "agility".

In the late 1980s the Leg Lab started creating hopping robots, these differed signifi-
cantly from others by exploring dynamic stability resulting from a simple spring-like
motion instead of complex walking gait generation. They showed that a similar con-
trol scheme could control running for 1,2 and 4 legged robots [22]. Later, the Linear
Inverted Pendulum LIP and the Spring Loaded Linear Inverted Pendulum model
was formalised [14] and proved to be able to generate natural-like gaits. In these
models, the dynamics of a walker are approximated as a point mass on either a
rigid or spring leg, thus creating an inverted pendulum. In addition to the Raibert

3

hoppers, the passive dynamic walkers studied by Tad McGeer in 1990 [18] fed into
the shift of thinking towards working with the inherent dynamics of a system rather
than trying to override them. These machines used the energy gained by a slope to
generate a stable and convincing walking gait with no active control.

In the past 15 years, computational speed has given rise to the ability to perform
online trajectory optimisation, otherwise known as model predictive control (MPC).
This control scheme uses a simplified model of the dynamics to simulate trajectories
into the future and pick the best control inputs to minimise some cost function.
This approaches have generally been brittle on systems that cannot be modeled
well, as errors compound over the trajectory rollout. However, recent approaches
on quadrupeds and bipeds show that incredible performance can be achieved using
a combination of offline trajectory optimisation, and online MPC [1] [17].

With the advent of learning algorithms and their success in many digital domains,
people have been attempting to use learned policies for robot control. The two
major routes are imitation learning and reinforcement learning.

Imitation learning attempts to create a control policy by tracking a set of ex-
pert demonstrations. With a large enough example dataset, interpolation is often
achieved where the agent is able to perform under scenarios it has never seen. One of
the largest benefits of imitation learning is that trajectories can be recorded on real
hardware by human demonstrators, encoding far more nuance than a reward func-
tion. Another source for expert data are offline trajectory optimisation algorithms
that might be too computationally intensive to run online, but can be "distilled"
down into a neural network policy.

Reinforcement learning provides an agent with a set of observations and a reward
per timestamp, then tasks the optimiser with tuning a control policy to maximise
the agent’s expected reward over it’s "lifetime". These algorithms have worked
phenomenally in controlling video or board games, where the agent can be trained
on the real game environment. These have surpassed most human players at even
complex games like Go [28] and StarCraft [30]. RL for real time robot control is still
in it’s early phases. Most algorithms generally require tens to hundreds of millions of
timesteps to train on a complex system which can equate to hundreds or thousands of
hours of real world equivalent training time. The data hurdle is often circumvented
by the use of simulated enviroments to gather vast amounts of data, however the
transfer from a policy trained in simulation to the real hardware (reffered to as sim-
to-real) is still an open problem. Despite these challenges, a number of promising
results have come out in the past 5 years. One of the best results of sim-to-real
policy transfer on a legged robot has been the quadraped controller developed by
ETH Zurich on their AnyMal platform [26]. The subsequent policies are likely some

4

of the most robust legged locomotion controllers to come out of a research lab [17].
These successes have also started to be realised on bipedal robots; the current world
record holder for the fastest 100m run by a robot is held by an RL controller from
Oregon State [5].

Motivation
While a final year masters project is nowhere near long enough to fully explore the
sim-to-real problem space, we will be taking a breadth first approach. Trying to
build the full pipeline from scratch will quickly highlight the issues with current
techniques and motivate further exploration. It is also a great way to be exposed to
a bunch of tangential problems in robotics, control, state estimation and learning
methods.

5

2 Control Design

Since our goal is to perform a sim-to-real transfer of a controller, a significant por-
tion of the project centered on the implementation of a joint controller and state
estimator. This section describes the control scheme, which takes in desired joint
goals and sends corresponding command packets to the motors. The next section
describes state estimation which provides a live estimate of the full state of the
robot. An early decision was made to run the inbuilt impedance control (joint level
proportional and derivative control) on each of the robot’s actuators and use desired
joint targets as the action space for the RL algorithm.

2.1 Architecture

Instead of writing a single or multi-threaded application to control all functions of
the robot, ROS 2 Humble [23] was used to connect various processes together into
a network of nodes. Each node fulfills a discrete task (or set of related tasks) and
generally can be built and tested in isolation. ROS was picked due to it’s

• Ease of use

• Reliability in a prototyping enviroment

• Support for mixing C++ and Python nodes

• Wide range of “off the shelf” packages and message types

• 3D transformation support [24]

• Visualization options1

• Inherent networking ability

A basic ROS network is made up of a set of nodes and topics. Each node functions
as a single program that can produce or consume messages. Each topic is a channel
through which messages are passed. Nodes can publish or subscribe to messages on
any available topic. Once inside a node, a message can be unpacked and used for
whatever purpose, however ROS defines a series of default message types and topics
that aid the standardization node communication. It should be noted ROS provides
far greater functionality than just basic message passing.

1Foxglove [9] was particularly handy

6

To begin, a rough node layout was decided on and overall robot control tasks were
split up between nodes. The network evolved as follows.

The hardware interface with the robot are two USB-to-CAN modules that interface
with a CAN bus on each leg. Frames sent on this bus represent joint targets,
control constants and feedback variables. Due to the complexity of handling the bus
communications and the need to multithread parts of this program, this was given
a full node. This also isolates the motor control from failures in other nodes and
allows a set of safety features to be run that “sanitize” inputs into this node.

Moving a step up, the motors do not match 1:1 to the kinematic joints on the robot.
Therefore a joint controller node was needed that subscribes to joint targets, and
publishes motor targets. Vice-versa it subscribes to motor states and publishes joint
states.

To generate the full state of the robot we must calculate the pose and velocity of
the torso. To measure orientation, an IMU hardware interface node was written
to receive data from an AHRS (Attitude and Heading Reference System) algorithm
running on a Raspberry Pi Pico Microcontroller which in turn, polls the IMU sensor.

7

As we do not have a direct way to observe the absolute position or velocity of the
robot, we must combine other measurements to estimate them. A proprioceptive
state estimator was written to calculate robot pose based on joint angles and base
orientation. This subscribes to the joint states and IMU topics and publishes an
estimated base link pose and velocity to a robot pose topic.

This set of nodes gives us our full system plant that subscribes to desired joint
targets and publishes full state.

To round out, we have the RL policy node that closes the loop by subscribing to the
full robot state and publishing desired joint angles. It also subscribes to a joystick
topic.

8

The full node graph is shown below, the classical feedback loop path is highlighted
in pink. When training the RL policy, we can abstract the entire "plant" block and
replace it with a simulated environment.

2.2 Motor Control

The motors used on SLIDER are several models from CubeMars’s AK Series of
BLDC servos [7]. These are scaled up commercial clones of the infamous Mini-
Cheetah actuator designed by Ben Katz [15]. A diagram of the robot layout with
the types of actuators is shown in Fig. 1.

9

Figure 1: The motor layout of the SLIDER robot

These actuators communicate over CAN bus using several command and telemetry
packets. These are split into control, feedback, enable and disable messages, as well
as a zero encoder command that was not used in this project. A diagram of the
byte layout is shown in Fig 2.

Figure 2: The data packing of the motor CAN frames

10

The control side of the slider_joint_control ROS package holds all code re-
quired to interface with the actuators on the robot. This takes the form of a se-
ries of classes with increasing abstraction, canbus, TMotor, MotorManager and the
motor_controller node itself.

The canbus class abstracts out bus parameters and allows for multiple motor ob-
jects to share the same bus parameters, helpful in a multi-bus architecture. Linux
socketcan is used to interface with the CAN controllers.

The TMotor class handles the final command frame packing, feedback frame unpack-
ing and low level can communication through a provided canbus class. Each motor
type has it’s own subclass that contains motor-specific constants such as torque and
velocity limits.

A MotorManager class was written to orchestrate all motors connected a single
bus. This class handles starting bus communications, enabling, and disabling all
connected motors as well as updating motor variables based on telemetry messages.
The SLIDER hardware has one CAN bus per leg, so two MotorManagers are required
to run the full robot. Each of these has a separate thread that continuously reads
incoming messages from the bus and routes the position, velocity and torque data
into the appropriate motor object, based on the CAN packet’s ID. These incorporate
a mutex that is locked whenever messages are being received to prevent any consumer
from reading out motor variables while they are being updated.

Finally the main motor_controller ROS node combines two MotorManagers with
a third control thread and a series of callbacks to send position, velocity or torque
commands. On startup, it sets each motor’s constants, position limits and zero
offsets. It includes three main protection features:

• Control watchdog timer. This disables all motors if the time since last received
position or torque goal is greater than the specified amount. This protects
against an external node sending a goal then crashing, leaving the robot stuck.

• Position discontinuity protection. If the received goal is too far away from a
current motor position, throw an error and disable motors.

• Joint limits. Max and min joint limits are set per joint and enforced on the
motor level. This simply clips the output and does not currently throw an
error.

11

2.3 Joint Control

Out of the robot’s 10 joints pictured in Fig 3, only four of them correspond directly
to a motor; the hip pitch and roll. The two slide joints are put through a pulley
and belt transmission that maps the motor’s angle to leg linear displacement. On
each foot, the two ankle motors are mapped to foot roll and pitch through a parallel
linkage.

Figure 3: Joints and joint space

Figure 4: Mapping between motor and joint space

12

To handle this, a C++ node was written that converts between motor and joint
space. In joint space, the joint_control node subscribes to target joint angles
and publishes joint states. In motor space it publishes target motor angles and
subscribes to motor states. This is done through topic callbacks, so happens live at
the rate the messages are received to minimize delay. In addition to computation
time, there is a delay introduced by having to unpack and repack a message to be
sent through the ROS middleware, however this is on the order of tens to hundreds
of nanoseconds [16] and therefore far lower than our control period (10 milliseconds).

The mapping between slide motor and joint states is as follows, where q represents
joint positions and θ represents motor angles.

qslide = slide_transmission_ratio · θslide_motor

q̇slide = slide_transmission_ratio · θ̇slide_motor

Fslide = τ slide_motor/slide_transmission_ratio

The following section will discuss the mapping between motor and joint space for
the ankle.

2.4 Ankle Kinematics

Each foot’s pitch and roll is controlled by two motors through a parallel linkage made
up of two lever arms coupled by control rods. All ankle kinematics are done in a sep-
arate C++ class which provides functions that are included in the joint_control
node.

The linkage diagram and notation is shown in Fig 5. This linkage type has been
previously used in robot ankle designs and the inverse kinematics are well studied.
The equation to go from joint angles to motor angles was implemented directly from
[33]. A previous project had implemented a neural net based solver [11] however
mechanical changes meant that it had become out of date and was inaccurate.

F ′
x = cos(θpitch) · Fox − sin(θroll) · Foz
F ′
y = sin(θpitch) · sin(θroll) · Fox + cos(θpitch) · Foy + cos(θroll) · sin(θpitch) · Foz
F ′
z = sin(θpitch) · sin(θroll) · Fox − sin(θpitch) · Foy + cos(θpitch) · cos(θroll) · Foz

13

a = F ′
x −Mx

b =Mz − F ′
z

c = ((l2Rod)− (l2Bar)− ||F ′ −M ||2)/(2 · lBar)

ψ = arcsin
(
bc+

√
b2c2 − (a2 + b2) · (c2 − a2)/(a2 + b2)

)
where

• ψ is motor angle

• θ is foot angle

• M is the motor point relative to the pivot point

• Fo is the foot link connection point relative to the foot pivot point when the
foot is level

• F ′ is the foot link connection point relative to the foot pivot point after trans-
formation.

The forward kinematics were not directly described, but can be calculated efficiently
using an iterative solver. The psudocode for this solver is shown in Alg. 1 Over a
number of iterations, the approximate motor values will converge on the true values
required to generate the desired pitch and roll. The iteration number, as well as the
gradient approximations were found through trial and error. If greater performance
is required, an approximate to the local derivative could be found using higher order
methods or the solver could be warm-started with the previous solution. However,
in it’s current state, the method converges in the order of microseconds on a laptop
processor.

14

Algorithm 1 Ankle Forward Kinematics
roll ← 0.0
pitch ← 0.0

left_motor ← measure_left_motor()
right_motor ← measure_right_motor()

max_iterations ← 10
for i ≤ max_iterations do

left_motor_approx, right_motor_approx ← ankleIK(pitch, roll)

left_motor_error ← left_motor - left_motor_approx
right_motor_error ← right_motor - right_motor_approx

roll ← roll + 0.2 · left_motor_error + 0.2 · right_motor_error
pitch ← pitch - 0.4 · left_motor_error + 0.4 · right_motor_error

end for

Figure 5: Diagram of the ankle linkage

Due to work done in previous projects, concerns were brought up about the speed
of such an algorithm, however this solver was benchmarked and outperforms the
previous neural net implementation by over 10×. Due to the network size, it is
feasible that less floating point operations are being done with the iterative solver
implementation, however the largest performance gain is likely from removing the
python library that handles network inference. This method also allows for param-

15

eter changes and refinements without having to re-train a network.

This was tested on the robot using a level and the reported ankle angles were within
0.5 degrees of actual for both forward and inverse. This error likely stems from
mechanical backlash, inaccurate measurements and mis-zeroed motors.

16

3 State Estimation

A fundamental assumption most RL algorithms make is that the system they are
controlling is markovian; the next state must depend only on the current state and
input actions. In dynamic systems, for this to be true, you need full observability,
so we will need estimate the full state of the robot. You can get around this by
providing a state history, which we also do, but providing full state is ideal. This
means we need to measure all joint positions and velocities in addition to the torso
pose and velocity. Our full state vector is

x = [p,Q, q, ṗ,ω, q̇]

where p is torso position represented in Cartesian space, Q is torso orientation rep-
resented as a quaternion, q are joint angles, ṗ is torso velocity, ω is torso angular
velocity and q̇ are joint velocities. Our joint angles and velocities are already pro-
vided by our motor and joint control nodes, so remaining is orientation, angular
velocity, position and linear velocity estimation for the torso. Previous projects on
the robot have worked towards generating a visual SLAM based state estimator for
the robot [3], however the particular camera was no longer installed and implemen-
tation code was in an unknown state.

3.1 Orientation Estimation

Part of estimating full robot state is base link orientation, in this case, the torso. To
measure this, a LSM6DSOX 6dof IMU breakout from Adafruit [2] was installed on
the robot base. This provides angular velocity and linear acceleration measurements
from 12 to 6.66 KHz. 208 Hz was chosen from the list of available sampling rates as
it is the slowest above our desired poll rate of 100 Hz. Picking a higher rate would
result in more noise and not aid our control policy as that is targeted to run at
50Hz. To fuse these two measurement sources into an absolute pose a quaternion
implementation of a standard complementary filter was used.

A minimal C library containing quaternion and vector operations was written to
abstract the algorithm and aid in debugging. This library contained structs for
Vector and Quaternion, and a standard set of quaternion operations such as addition,
multiplication, inverse, lerp and some basic vector operations such as dot and cross.

The filtering algorithm works as follows. Initially, the local angular velocity and
gravity vector are polled from the IMU. We define our IMU frame as A and the

17

world frame as W , we also initialise a world heading estimate q, represented as a 4
element quaternion.

ωA = [IMU Measured Angular Velocity, 0]

aA = [IMU Measured Acceleration.0]

qW = [1, 0, 0, 0]

The local angular velocity, represented in the body frame, is converted into a global
angular velocity, represented by the world frame, by rotating it by the inverse of the
IMU heading estimate.

ωW = q−1
W ωAqW

This is then used to calculate a quaternion derivative of the heading (note that the
derivative of a quaternion is not the same as a angular velocity, but they are tightly
related)

q̇W = 0.5 · ωwqW .

Gravity is converted into an orientation by calculating the rotation required to
move the up vector to the gravity vector, this is done using the standard shortest
arc formula

u⃗p = [0, 0, 1]

gW = [u⃗p× aA, |u⃗p| · |aA|+ u⃗p · aA].

Finally these components can be used to implement a complementary filter. This
filter is of a prediction-correction type, where a smooth relative measurement is com-
bined with a noisy absolute measurement to gain a measurement that is both smooth
and free of drift. The next orientation is predicted by integrating the quaternion
derivative forward by our loop period and summing it to the previous estimate

q′W = qW + ˙qW · dt.

This is then combined with the absolute but noisy gravity measurement by lerping
between the two using the filter constant c, in this case 0.99

q′Wcorrected = q′W · c+ gW · (1− c).

This results in an estimate that converges to the absolute orientation over time,
preventing drift, but filters out noise from the acceleration measurements. In this

18

implementation, by not rotating the gravity quaternion by the current yaw value,
we force the yaw estimate to always converge to zero. This was chosen due to not
using an absolute yaw reference, such as a magnetometer. While the IMU contains
one, it was deemed unnecessary as initial walking trials are short and the robot has
no direct control over yaw.

Once the absolute orientation estimate is computed, the MCU prints them out over
a virtual serial line at 115200 bit/s. The message ordering is shown below, values
are rounded to three decimals places and each line is terminated with a line break

[quat.w, quat.x, quat.y, quat.z,

gyro.x, gyro.y, gyro.z, acc.x, acc.y, acc.x]

A ROS node then parses the incoming byte stream and publishes the resulting orien-
tation, angular velocity and acceleration as an Imu message type [25]. Additionally,
IMU pose (PoseStamped) and orientation (Quaternion) topics are published to
make visualization easier.

3.2 Proprioceptive Pose Estimation

The challenge of object pose estimation is one far older than the robotics field. Any
vehicle, manned or otherwise would ideally like to know where it is at all times.
Good methods now exist for low rate, high noise absolute positioning, such as GPS,
but the need for local, high bandwidth, high accuracy relative positioning still exists.
These local, relative, fast methods are often referred to as odometry. This section
will describe the creation of a properoceptive (in the sense that it uses limb position)
relative pose estimation algorithm.

With our goal of self-contained walking, we could not use a system that relied on
external senors, such as a motion tracking setup. So we have to use entirely internal
sensors. A plan was devised to use the foot pose to back-calculate a transform from
a locked foot point to the base link. When the next foot makes contact with the
ground it is considered "locked" and the base link transform is now calculated from
it. The foot in contact is simply assumed to be the foot with the lowest point in
world space. This method makes several assumptions

• The body orientation is known

• All joint angles are known

• At least one foot is placed on the ground

• Feet do not slip once they have touched the ground

19

• The ground is perfectly flat

With the use of foot force estimation, loadcell or otherwise, the flat ground assump-
tion can be removed and with proper inertial filtering on the body pose (such as
an Extended Kalman Filter), the slip and foot contact assumptions can be partially
removed as well.

We will define X as the body frame, L as the left foot frame R as the right foot frame
and C as the contact point frame, which is initialised to a position of [0, 0, 0]. The
algorithm starts out by setting all joint angles in our kinematic model to be equal to
the measured joint angles on the robot. Additionally it sets the body orientation to
the measured orientation reported by the IMU fusion algorithm. Given our contact
point in world space WpC , our rotation from robot base to world space WRX and
our foot point in robot base space XpLX , we can calculate the position of the robot
base (the center of the torso in this case) in world space. This example is specifically
for left foot support

WpC − WRXXpLX = WpL − XpLW = WpL + LpXW = WpXW .

At the timestep where contact is swapped between feet, the new fixed contact point
is calculated based on the world to foot translation of the newly contacting foot.
Given our previous contact point in world space WpC , our body pose estimate in
world space WpXW , both feet points in robot space XpLX , XpLX and the rotation from
robot to world space WRX , the next contact point is calculated as follows. This
particular example is for left to right transition where the previous contact point is
assumed to equal the the previous world position of the left foot WpL = WpC .

WpC
′
= WpC + WRX(XpRX − XpLX)

= WpC + WRX(LpRX)

= WpC + LpRW

= WpL + LpRW = WpR

The body pose is now calculated based on the inverse transform from the new
estimated contact point until the next transition occurs, this is shown in Fig. 6.
Due to this being a discrete algorithm, the transition will always happen after the
foot goes lower than the floor, so the new contact point is shifted up so that the
z-coordinate is 0. This is also following from our assumption of a perfectly flat floor.
If foot sensors were incorporated and the crude foot contact heuristic replaced,
this system could estimate elevation changes from stairs, ramps or other vertical
deviations.

20

Figure 6: The transform tree change when a new contact point is made

To calculate body velocity, a 1st order derivative approximation is made using the
past, current pose and the time delta between them.

21

4 Reinforcement Learning

Figure 7: Trajectory of a learned walking gait

4.1 Modeling and Simulation Enviroment Setup

For a good sim-to-real transfer, an accurate simulated robot model must be created.
An existing model of SLIDER was available in URDF format, however it became
apparent that it’s inertial properties were decently inaccurate. A simple mass check
revealed that it was about half of the real robot’s mass and the corresponding link
inertias were also similarly different.

Parameter estimation
A new model was created using a combination of the original SLIDER CAD and
measured weights on the robot, however there were some parameters that could
not be directly measured or estimated from the CAD model, such as joint friction
and effective actuator gains. To combat this, several trajectories were recorded on
the robot and ran through a stochastic multi-parameter estimator. The operating
principle of the estimator works as described in Alg. 2. The algorithm is initialised
with a set of initial parameters, a parameter range, a set of measured data from
the robot and a desired noise scale (somewhat equivalent to a learning rate). The
scale can be lowered through the fitting run if convergence is reached. As it runs, it
randomly perturbs the current parameters until a lower error parameter set is found,
then swaps those into the current parameters. A set of example plots from the tool
estimating stiffness, damping and inertia for both hip pitch and roll are presented
in Fig. 8.

22

Algorithm 2 Stchocastic Multi-Parameter Estimator
current parameters ← initial parameters
parameter range ← parameter max - parameter min
best cost ← Inf
for i ≤ number of iterations do

nudge ← parameter range · RandomGaussian() · scale

trial parameters ← current parameters + nudge
trial parameters ← clamp(trial parameters, parameter max, parameter min)

simulated trajectory ← SimulateRollout(trial parameters)

cost ← MeanSquaredError(simulated trajectory, measured data)

if cost < best cost then
current parameters ← trial parameters
best cost ← cost

end if
end for

Figure 8: Initial vs Final state of the parameter estimation tool

Domain randomization
Domain randomization was performed by adding a small amount of per trial random
offset and per timestep random noise to both on the action and observation vectors.
This helps prevent the RL equivalent of "overfitting" and aids generalization.

Simulator
In addition to modeling the robot, a simulation framework must be chosen. For
conciseness, a full review of simulators will be omitted here, but [6] contains a

23

comprehensive summary.

MuJoCo [20] was picked due to its speed, focus on accurate contact modeling, open
source code base and operating system independence. The previous SLIDER simu-
lation in Gazebo could only run at a fraction of real time, whereas the new MuJoCo
simulation runs at roughly 30x real time during training. This can be optimized
further, but proved fast enough to iterate on.

The RL algorithms within our chosen learning framework interface with the envi-
ronment using a standardized set of function calls, the most common of these is the
Gym library from OpenAI (now Gymnasium maintained by the Farma Foundation)
[10]. Gym was picked due to its low overhead, simplicity and ability to plug into
the desired reinforcement learning package.

4.2 Learning Framework and Reward Function

Stable Baselines3 [29] was chosen as our learning framework due to the ability to trial
different algorithms, out of the box support for gym, tensorboard support and good
codebase and documentation. PPO [27] was picked due to it’s support of continuous
action spaces and historical ability to handle control-through-contact problems well.

At its core, reinforcement learning is an optimisation algorithm: it attempts to
pick the ideal set of policy net parameters that maximize the expected reward from
rollouts. PPO is a policy gradient method, which attempts to estimate the expected
reward gradient for a given state and shift the policy towards higher reward. While
explaining the full technical description of PPO is far outside the scope of this
report2, a short intuitive explanation will be presented. The high level update rule
looks like

θt+1 = θt + α∇J(θt)

where θ is our policy parameters, α is a learning rate and ∇J(θt) is the derivative
of expected reward over a full trajectory relative to policy parameters. This is
in essence the classic gradient ascent method. While it would be nice to have an
oracle that spat out the true derivative, that is infeasable, so approximations need
to be made. One of the largest challenges is knowing how big of an update step
to make given a policy gradient, a "low quality" gradient estimate can result in
parameters being shot off into a local minima or worse. PPO attempts to combat
this problem by constraining the policy updates to a range based on the difference
in probabilities of taking an action in the current vs the new policy. If that ratio
is high in either direction, it clips the update to prevent an action being naively

2The explination is large enough to be a full master’s project on it’s own [4]

24

greedily taken or being forgotten about due to an uninformative set of data. A nice
technical explanation can be found in [21].

As with all optimal control methods, both learned and classical, they are highly
sensitive to their reward functions. Learned methods are arguably more sensitive
due to their ability to probe a more complex environment (such as a full physics
simulator instead of a simplified model). This can lead to what is known as reward
hacking, where unintended behavior can be used to gain large reward by exploiting
various environmental features.

Initially to test the learning pipeline, a simplified model of SLIDER was created, and
all joints were locked down except the slides. A jumping reward was provided where
the per step reward was the square of the torso z position. With some tweaking,
this produced an “enthusiastic”, but solid jumping policy that proved the ability to
provide a reward and use the simulated environment to learn the control actions
required to maximize that reward.

To incrementally add complexity, more joints were unlocked and more complicated
reward functions were generated, notably,

• Jumping in place (minimizing lateral drift)

• Running with unlocked hip pitch

• Running with unlocked hip pitch and roll

• Running with hip pitch+roll and foot pitch+roll

Once a running gait had been generated on the simplified model, it was time to work
on generating a walking gait. In this context the difference between walking and
running is considered to be the time the robot is in contact with the ground. When
walking, the robot always maintains contact, this results in a different dynamics
where you act less like a bouncing spring and more like a falling pendulum. Running
is often easier to control than walking.

To encourage the robot to walk instead of shuffling, a cost term was added that
heavily penalized sliding a foot while it was in contact. To give the robot a sense of
time a set of sinusoids were provided as input to the model. This has a biological
parallel in the form of central pattern generators [13] [8]. CPGs are naturally occur-
ring neural oscillators and have been hypothesised to aid in locomotion and other
periodic tasks. These inputs are always locked to a multiple of the desired stepping
gait

cos(t · 2π/(Desired gait period)).

Interestingly enough, the model almost always latched onto this input even if a gait

25

timing wasn’t directly enforced. Letting the model learn to generate a swing and
stance gait is fairly unique as nearly all other learned bipedal policies explicitly
enforce a contact schedule. In future iterations of this controller, the model should
be given the ability to adjust it’s clock timings to increase or decrease stepping
frequency.

Once the simplified model was walking and the reward function structure was val-
idated, the full URDF was imported and tweaked. An additional set of reward
terms were introduced to minimize energy, control the robots heading, and mini-
mize torso accelerations and angular velocity. The final observation space included
three timesteps of full state history, the reference velocity and the sinusoid clock
input.

4.3 Final Reward Function

Body Velocity
The main task cost component is a penalty on squared error between reference and
measured velocity components. The term is

Cvel = 5.0 · (vrefx − vbodyx)2 + 2.0 · (vrefy − vbodyy)2

where vref is the desired velocity.

Power
chip = 1.0 cslide = 0.1 cankle = 1.0

Cjointfactors = [chip, chip, cslide, cankle, cankle, chip, chip, cslide, cankle, cankle]

P = F jointq̇
T

Cpower = P TCjointfactorsP

where F is generalized force, q̇ is generalized velocity and C is a set of adjustment
terms that allow certain joints to be weighted higher.

This cost provides a nice "grounding" effect on the controller, with physically unrea-
sonable or implausible gaits being generally rejected. Power is also a better measure
than just force, as a lot of natural gaits require high force events. With the initial
force cost, the robot would often choose to lower down to the slide joint limit and
sit there, so the slide was no longer supporting the weight of the robot.

26

Foot Slip
One of the largest issues with the initial network was it’s tendency to "shuffle". To
combat this, a penalty was placed on a foot having both force and velocity. The
cost terms are

CLfootslip = |[vLfootx, vLfooty]| · FLfoot

CRfootslip = |[vRfootx, vRfooty]| · FRfoot

Foot Slip Cost = Cfootslip = CLfootslip + CRfootslip.

Body Orientation
To keep the body frame aligned with the desired orientation, cost components pe-
nalized deviation of both the upwards and forwards axes

Cbodyup = |[ux, uy]|

Cbodyforward = |[fy, fz]|

where u is a vector aligned with the vertical ("up") axis of the robot body frame,
and f is a vector aligned with the forward axis of the body frame.

Body Movement
A desired characteristic is the smoothness of the torso trajectory during the walk
cycle. This aids mechanical longevity, especially for any onboard hardware and
sensors and generally results in more nautral feeling gaits.

Cbody angular velocity = |ωbody|

Cbody acceleration = |abody − g|

where ωbody is the angular velocity of the torso, abody is the linear acceleration of the
torso and g is gravity.

Fall
If the robot falls (the torso z position is less than 0.4 meters), a fall cost is applied
and the episode is reset

Cfall =

{
1, if (pbody z) < 0.4

0, otherwise.

27

Full Cost Function
The full cost function and relative weights are as follows, note that cost terms are
not pre-normalised so specific weights should be taken with a grain of salt

C = Cvel + 0.015 · Cslip + 0.5 · 10−5 · Cpower

+ 2.5 · (Cbody up) + 0.2 · (Cbody forward)

+ 0.02 · (Cbody angular velocity) + 0.01 · (Cbody acceleration)

+ 200 · Cfall.

Reward Function
To generate a reward function from a cost function, we sum the negated cost with
a constant offset to result in positive reward. Purely negative rewards do not play
well with RL algorithms which train on expected reward. This generally causes
them to seek early termination, since the highest expected reward is gained by
accumulating the least cost and each timestep incurrs cost. Interestingly, the choice
of constant to sum makes a noticable difference in the training process, with too
high of a constant resulting in the robot preffering to statically stand. The is likely
because the risk of ending the episode early by falling outweights the potential gain
in reward by learning to walk. A "good" constant is one where standing results in
negative reward, but good velocity tracking results in positive reward. The final
reward function is

R = 2.0− C.

4.4 Learning Curriculum

During initial testing, it was found that the RL policy struggled to learn how to
track omnidirectional gates well. This often took the form of never beginning to
walk if a randomized reference velocity was given in the base policy. One possible
explanation for this is that the average velocity was (0.0, 0.0) and before a full gait
had developed, standing still provided the best expected reward for the randomized
target. Thus, it would get stuck in a local minima and struggle to escape. Making
this issue worse was the fact that standing still is generally favorable to the other
terms within the reward function (body pose and accelerations, effort, foot sliding).
A learning curriculum was designed to combat this, shown in Fig. 9.

28

Figure 9: An example learning curriculum

29

5 Validation

To validate the learned policy in isolation, a series of simulated tests were performed.
For impulse rejection, a normal walking model was used that had been trained on
a flat ground environment with periodic perturbations. For slope and stairs, a
climbing model was created that trained on an increasing series of slopes and stairs.
With extra perception it would be possible to swap between these models to pick
the most adequate one for the task, or with a more sophisticated policy network
setup including memory, the robot could adapt on the fly.

To validate the sim-to-real transfer of the policy, a set of walking trials were per-
formed on hardware. Some "hacks" had to be performed to get the policy running
well, such as scaling all outputs down by roughly 0.75, as the joint PD controllers
appeared to go unstable when the policy was run at full actuation level. This was
likely due to control rate and other delays impacting full system stability. Inter-
estingly enough, once this was done, the policy was surprisingly robust, if a bit
"hesitant". A comprehensive analysis on the source of these oscillations should be
performed, but it was not able to be done on the timeline of this project.

5.1 Simulated Impulse Rejection

Figure 10: Diagram showing the policy recovering from a perturbation.

To validate the policy’s ability to reject impulse force perturbations, a grid of force
vectors was created and applied for several trials. The model was given 0.5 seconds
to start walking at 0.5m/s and then the force was applied randomly between the 0.5

30

and 2.5 seconds into the trial, finally, an extra 4.5 seconds was given for the model
to fall or recover. Presented in Fig. 11 are isolated X and Y impulses, whereas Fig.
12 shows sucsess over the full vector field.

Figure 11: Impulse rejection results for pure X and Y impulses.

Figure 12: Impulse rejection successes from a grid of force vectors. Yellow represents
full success.

31

5.2 Simulated Slope Climbing

The model walking at 0.5m/s was trialed against a series of increasing slope angles.
The policy was evaluated on a "peak" where the slope increased and then decreased
at the same rate. A full traversal both up and down the obstacle with a return to
normal walking was considered a success. The model reached full success on a 12.5◦

slope. The results are plotted in Fig. 13.

Figure 13: Results from increasing slope angle

32

5.3 Simulated Stair Climbing

The model walking at 0.5m/s was trialed against a series of increasing stair heights,
each step was given a depth of 50cm. A full traversal both up and down the stairs
with a return to normal walking gait was considered a success. The model reached
full success with a 3cm step height, but could likely be improved with more stair
specific training. The results are plotted in Fig. 14.

Figure 14: Results from increasing stair step height

33

5.4 Sim-to-Real Flat Ground Walking Trials

Figure 15: State estimate results from a walking trial

A series of forward walking trials were performed with the real hardware to test
the controller transfer. Due to the harness, only about a meter of walking was
achieved per trial. Out of 27 trials, only one fall not due to external perturbation
was experienced, which was due to starting the controller too fast. The robot was
robust to fairly significant perturbations as shown in Fig 16.

Figure 16: Robot recovering from a push

34

5.5 State Estimation Accuracy

To evaluate the performance of the state estimator, a walking trial was performed
while recording all data coming from the robot. The final estimated x position was
compared against the real measured displacement. The estimated forward distance
was 0.47m and the real measurement was 0.67m, giving an error of 30%. This is
likely unacceptably large for odometry, but somewhat impressive given the number
of assumptions the algorithm makes and the lack of a filter. While there was not
time to implement in this project, a Kalman filter can be applied using the other
IMU readings to help combat this. Another source of discrepancy is the naive ground
contact heuristic, which can be replaced with foot contact forces either through load
cells or using the leg force estimate. Fig. 15 shows a side by side of the full robot
pose relative to a frames from the walking trial and Fig. 17 shows the resulting x
and y plot, of note is the characteristic side to side swing present in the y trace.

Figure 17: Position estimate plot from a walking trial

35

6 Conclusion

In this report, the full software stack for the sim-to-real transfer of a RL bipedal
walking policy was described. The final policy was capable of slow, stable walking
with disturbance rejection on the real hardware and fast, highly dynamic walking in
simulation. It matches or outperformes all existing policies on the robot. To achieve
the sim-to-real transfer of this policy, a joint control and state estimation system
was built that can estimate full robot state using only internal sensors. A stochastic
parameter estimation tool was also written to aid refinement of the model’s inertia
and gain parameters. The partially successful transfer onto hardware implies that
the learned policy had begun to generalize.

A set of takeaways from this project are:

• State estimation and system modeling are the largest hurdles to
correctly applying a sim-to-real RL policy. There are many great "off
the shelf" frameworks for reinforcement learning and efficient simulation but
minimal existing libraries for doing state estimation on legged systems. Addi-
tionally, performing automated system identification on high-dof systems with
partial observantly (e.g. estimating backlash) is still an open problem.

• Tuning the physical system should be given just as much care as
tuning the control policy.

• Using impedance joint control significantly speeds up training and
improves policy robustness.

• Rigid robots do not walk well. From playing around with joint gains,
there was a compliant region where the policy learned and performed best.
Giving the network the ability to change joint impedance throughout the gait
cycle is likely desirable and has natural precedence.

• Feedforward plays a significant part of a walking controller. When
training, the early tests did not include the CPG input nor state history. This
resulted in a purely feedback controller which did not function well, nor result
in natural feeling trajectories. With joint level impedance control, a fully
feedforward walking gait is feasible to generate and frees up the rest of the
network to do high level feedback adjustment.

• Given the right reward function, a periodic gait can emerge without
enforcing a contact schedule.

36

Bibliography

[1] "Taskable Agility: Making Useful Dynamic Behavior Easier to Create" lecture
by Scott Kuindersma. url: https://mediacentral.princeton.edu/media/
%22Taskable+AgilityA+Making+Useful+Dynamic+Behavior+Easier+to+
Create%22+lecture+by+Scott+Kuindersma/1_z4r6sz39.

[2] Adafruit LSM6DSOX + LIS3MDL. url: https : / / www . adafruit . com /
product/4517.

[3] Xinyu Bai. “Design and Implementation of a State Estimator for Bipedal Walk-
ing Robot SLIDER”. MA thesis. Imperial College London, 2022.

[4] Daniel Bick and MA Wiering. “Towards Delivering a Coherent Self-Contained
Explanation of Proximal Policy Optimization”. MA thesis. 2021.

[5] Cassie Sets World Record for 100M Run. url: https://www.youtube.com/
watch?v=DdojWYOK0Nc.

[6] Jack Collins et al. “A review of physics simulators for robotic applications”.
In: IEEE Access 9 (2021), pp. 51416–51431.

[7] CubeMars AK Series Dynamical Modular. url: https://www.cubemars.
com/category-122-AK+Series+Dynamical+Modular.html.

[8] Milan R Dimitrijevic, Yuri Gerasimenko, and Michaela M Pinter. “Evidence
for a spinal central pattern generator in humans a”. In: Annals of the New
York Academy of Sciences 860.1 (1998), pp. 360–376.

[9] Foxglove. url: https://foxglove.dev/.
[10] Gymnasium Python Library. url: https://github.com/Farama-Foundation/

Gymnasium.
[11] Matthew Hayes. “Torque Control for a 2-DOF Parallel Ankle Mechanism”.

MA thesis. Imperial College London, 2022.
[12] Kazuo Hirai et al. “The development of Honda humanoid robot”. In: Proceed-

ings. 1998 IEEE international conference on robotics and automation (Cat.
No. 98CH36146). Vol. 2. IEEE. 1998, pp. 1321–1326.

[13] Auke Jan Ijspeert. “Central pattern generators for locomotion control in ani-
mals and robots: a review”. In: Neural networks 21.4 (2008), pp. 642–653.

37

[14] Shuuji Kajita et al. “The 3D linear inverted pendulum mode: A simple mod-
eling for a biped walking pattern generation”. In: Proceedings 2001 IEEE/RSJ
International Conference on Intelligent Robots and Systems. Expanding the
Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180).
Vol. 1. IEEE. 2001, pp. 239–246.

[15] Benjamin G Katz. “A low cost modular actuator for dynamic robots”. MA
thesis. Massachusetts Institute of Technology, 2018.

[16] Tobias Kronauer et al. “Latency analysis of ros2 multi-node systems”. In: 2021
IEEE International Conference on Multisensor Fusion and Integration for In-
telligent Systems (MFI). IEEE. 2021, pp. 1–7.

[17] Joonho Lee et al. “Learning quadrupedal locomotion over challenging terrain”.
In: Science robotics 5.47 (2020), eabc5986.

[18] Tad McGeer et al. “Passive dynamic walking”. In: Int. J. Robotics Res. 9.2
(1990), pp. 62–82.

[19] Robert B McGhee. “Some finite state aspects of legged locomotion”. In: Math-
ematical Biosciences 2.1-2 (1968), pp. 67–84.

[20] MuJoCo Advanced physics simulation. url: https://mujoco.org/.
[21] Proximal Policy Optimization (PPO), Deep Reinforcment Learning Class. url:

https://huggingface.co/blog/deep-rl-ppo.
[22] Marc Raibert, Michael Chepponis, and HBJR Brown. “Running on four legs

as though they were one”. In: IEEE Journal on Robotics and Automation 2.2
(1986), pp. 70–82.

[23] ROS 2 Humble Hawksbill. url: https://docs.ros.org/en/foxy/Releases/
Release-Humble-Hawksbill.html.

[24] ROS 2 Humble TF library. url: https : / / docs . ros . org / en / humble /
Tutorials/Intermediate/Tf2/Tf2-Main.html.

[25] ROS IMU Message.
[26] Nikita Rudin et al. “Learning to Walk in Minutes Using Massively Paral-

lel Deep Reinforcement Learning”. In: CoRR abs/2109.11978 (2021). arXiv:
2109.11978. url: https://arxiv.org/abs/2109.11978.

[27] John Schulman et al. “Proximal Policy Optimization Algorithms”. In: CoRR
abs/1707.06347 (2017). arXiv: 1707.06347. url: http://arxiv.org/abs/
1707.06347.

[28] David Silver et al. “Mastering the game of go without human knowledge”. In:
nature 550.7676 (2017), pp. 354–359.

[29] Stable Baselines 3. url: https://stable-baselines3.readthedocs.io/
en/master/.

[30] Oriol Vinyals et al. “Grandmaster level in StarCraft II using multi-agent rein-
forcement learning”. In: Nature 575.7782 (2019), pp. 350–354.

38

[31] Miomir Vukobratovic and Davor Juricic. “Contribution to the synthesis of
biped gait”. In: IEEE Transactions on Biomedical Engineering 1 (1969), pp. 1–
6.

[32] Ke Wang. “Design, Modelling and Control of SLIDER: An Ultralightweight,
Knee-Less, Low-Cost, Bipedal Walking Robot”. PhD thesis. Imperial College
London, 2022.

[33] Chengxu Zhou and Nikos Tsagarakis. “On the comprehensive kinematics anal-
ysis of a humanoid parallel ankle mechanism”. In: Journal of Mechanisms and
Robotics 10.5 (2018), p. 051015.

39

